Enhanced Turing Machines
 Lecture 28
 Sections 10.1-10.2

Robb T. Koether

Hampden-Sydney College
Wed, Nov 2, 2016
(1) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

Outline

(9) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

Increasing the Power of a Turing Machine

- It is hard to believe that something as simple as a Turing machine could be powerful enough to solve complicated problems.
- We can imagine a number of improvements.
- A Stay option
- Multiple tapes
- One-way infinite tape
- Two-dimensional tape (n-dimensional tape)
- Addressable memory
- Nondeterminism
- etc.

Outline

(9) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

A Stay Option

- Rather more left or right on every transition, we could allow the Turing machine to stay at its current tape position.

A Stay Option

Theorem
 Any Turing machine with a Stay option is equivalent to some standard Turing machine.

Outline

(9) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

One-way Infinite Tape

- Would a Turing machine with a one-way infinite tape be more powerful than a standard Turing machine?

One-way Infinite Tape

Theorem

Any Turing machine with a one-way infinite tape is equivalent to a standard Turing machine.

One-way Infinite Tape

- We can use a one-tape machine to simulate the two-way infinite tape.
- Establish a tape position that marks the left "edge" of the one-way tape.
- Symbols that would be to the right of that mark will occupy the odd positions.
- Symbols that would be to the left of that mark will occupy the even positions.
- Modity the transitions accordingly.

Outline

(9) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

Multiple Tapes

- Would a Turing machine with k tapes, $k>1$, be more powerful than a standard Turing machine?
- Each tape could be processed independently of the others.
- In other words, each transition would read each tape, write to each tape, and move left or right independently on each tape.

Multiple Tapes

Theorem
Any language that is accepted by a multitape Turing machine is also accepted by a standard Turing machine.

Multiple Tapes

Proof (sketch):

- Let the tape contents be:

$$
\begin{array}{ll}
\text { Tape 1: } & x_{11} x_{12} x_{13} \ldots x_{1 n_{1}} \\
\text { Tape 2: } & x_{21} x_{22} x_{23} \ldots x_{2 n_{2}}
\end{array}
$$

$$
\text { Tape } k: \quad x_{k 1} x_{k 2} x_{k 3} \ldots x_{k n_{k}}
$$

- Then we would write on a single tape

$$
\# x_{11} x_{12} \ldots x_{1 n_{1}} \# x_{21} x_{22} \ldots x_{2 n_{2}} \# \ldots \# x_{k 1} x_{k 2} \ldots x_{k n_{k}} \#
$$

Multiple Tapes

Proof (sketch):

- To show the current location on each tape, put a special mark on one of that tape's symbols:

$$
\# x_{11} \underline{x}_{12} \ldots x_{1 n_{1}} \# \underline{x}_{21} x_{22} \ldots x_{2 n_{2}} \# \ldots \# x_{k 1} \underline{x}_{k 2} \ldots x_{k n_{k}} \#
$$

- Begin with

$$
\# \underline{x}_{11} x_{12} \ldots x_{1 n_{1}} \# \sqcup \# \ldots \# \sqcup \#
$$

Multiple Tapes

Proof (sketch):

- The Turing machine scans the tape, locating the current symbol on each "tape."
- It then makes the appropriate transition.
- Write a symbol in each of the current positions.
- Move the location of the current symbol one space left or right for each tape.
- Of course, the devil is in the details.

Outline

(9) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

Binary Addition

Example (Binary Addition)

- Binary addition is much simpler if we have a three-tape machine.
- Write x on tape 1 and write y on tape 2.
- Write the sum on tape 3.
- For simplicity, assume fixed-length integers.

Outline

(1) Variants of Turing Machines

- A Stay Option
- One-Way Infinite Tape
- Multiple Tapes
- Examples
(2) Assignment

Assignment

Homework

- Use JFLAP to do the following:
- Design a 3-tape machine that will do subtraction of fixed-length integers. Allow the results to "wrap around." That is, if $y>x$, then the result of $x-y$ will be $2^{n}+(x-y)$.
- Design a 3-tape machine that will accept the language

$$
\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n} \mid n \geq 0\right\}
$$

